Complex Metal Oxide Thin Film Growth by Metalorganic Chemical Vapor Deposition

نویسندگان

  • Seung-Yeul Yang
  • Ichiro Takeuchi
  • Raymond A. Adomaitis
چکیده

Title of Document: COMPLEX METAL OXIDE THIN FILM GROWTH BY METALORGANIC CHEMICAL VAPOR DEPOSITION Seung-Yeul Yang, Doctor of Philosophy, 2005 Directed By: Professor Ramamoorthy Ramesh, Department of Materials Science and Engineering The phenomenon of ferroelectricity recently attracted great attention with the successful advances in the development of thin-film fabrication. This development enables the integration of ferroelectric materials directly into device fabrication processes such as MEMS and FeRAMs. The stringent need for high-density, highspeed, and low-power memory devices has prompted an immense interest in studying the size effects in ferroic systems. The thickness dependence of ferroelectricity and critical thickness, which is the thickness limit when the ferroelectricity disappears, has become an issue of tremendous interest for both scientific and technological point of view. In parallel, current nonvolatile memory manufacturing processes inevitably require a scalable process such as metal-organic chemical vapor deposition (MOCVD) to deposit the ferroelectric layers. The process controls as well as the ferroelectric and piezoelectric properties of two ferroelectric material systems, lead zirconate titanate (PZT) and bismuth ferrite (BFO), prepared by MOCVD is presented in this dissertation. A systematic study on deposition process control such as stoichiometric composition, structure change and growth temperature was carried out. The scaling of ferroelectric properties with film thickness in PZT films has been investigated. PZT films show bulk-like properties for thickness above ~20 nm. It was observed that a progressive decrease in the ferroelectric polarization as well as the piezo-response as the thickness is decreased; films as thin as 3.6 nm are piezoelectric. In this work, the interpretation of the origins of this decrease as well as results of the MOCVD processing studies is studied. Epitaxial BFO thin film, which is an interesting candidate for Pb-free ferro / piezoelectrics, was grown by MOCVD as the first challenge. The film composition and phase equilibrium are sensitive to the Bi:Fe supply ratio of precursors. In the optimized condition, an epitaxial single perovskite phase thin films were obtained. Electrical measurements using both quasi-static hysteresis and pulsed polarization measurements confirm the existence of ferroelectricity with a switching polarization of 110-120 μC/cm2, ∆P (= P* P^). Out-of plane piezoelectric (d33) measurements using an atomic force microscope yield a value of 50 – 55 pm/V. COMPLEX METAL OXIDE THIN FILM GROWTH BY METALORGANIC CHEMICAL VAPOR DEPOSITION

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

III-Vs at scale: a PV manufacturing cost analysis of the thin film vapor–liquid–solid growth mode

The authors present a manufacturing cost analysis for producing thin-film indium phosphide modules by combining a novel thin-film vapor–liquid–solid (TF-VLS) growth process with a standard monolithic module platform. The example cell structure is ITO/n-TiO2/p-InP/Mo. For a benchmark scenario of 12% efficient modules, the module cost is estimated to be $0.66/W(DC) and the module cost is calculat...

متن کامل

Liquid Phase Chemical Deposition of Cobalt Sulphide Thin Films: Growth and Properties

Metal chalcogenide thin films are assuming increasing interest in a variety of optical and optoelectronic devices viz. decorative coatings, solar absorbers, photo-detectors, and solar cells including recent photoelectrochemical solar cells [1-5]. Attempts were made to deposit a variety of metal chalcogenide thin films employing various deposition technologies individually [1,4,5,611] and very r...

متن کامل

Inorganic-Filler Chemical Vapor Deposition: A New Approach To Grow Nanoporous Thin Films

A new method for the growth of nanoporous thin films is described. The process is targeted to the formation of titanium dioxide (TiO2) through a low-temperature inorganic-filler chemical vapor deposition (CVD) process. The growth technique employs gas-phase reaction of an alkali metal (Na) and a metal halide (TiCl4) and subsequent thin film growth within a low-pressure coflow diffusion reactor....

متن کامل

The Morphology and Microstructure of Thin-Film GaAs on Mo Substrates

The growth of GaAs thin films on Molybdenum foils was investigated in an attempt to find a low-cost substrate for GaAs. The films were grown by metalorganic chemical vapor deposition (MOCVD). The film thickness was in the 2–4μm range, while the deposition temperature was in the 650o-825°C range. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to investiga...

متن کامل

Microstructure and optical properties of scandium oxide thin films prepared by metalorganic chemical-vapor deposition

Dense, high-index, and reproducible scandium oxide (Sc2O3) thin films with high mechanical strength were grown on glass substrates by metalorganic chemical-vapor deposition. The influence of deposition temperature on the microstructure evolution and optical properties of Sc2O3 thin films was investigated by x-ray diffraction, scanning electron microscopy, atomic-force microscopy, transmission e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005